Introduction to the Diffie-Hellman Key Exchange

by Elsa Frankel

February 2023

Prerequisites

Multiplicative Group of Integers Modulo *n* Primitive Roots Euler's Totient Function

Multiplicative Group of Integers Modulo n

DEFINITION: the multiplicative group of integers modulo n is the set of all relatively prime positive integers n - 1 for a given n. We can express this group as $\{0, 1, ..., n - 1\}$

EX: let n = 6, we have that 1 and 5 are relative primes, so the multiplicative group of integers modulo 6 is $\{1, 5\}$

note: these can also be referred to as the the "residues modulo n"

(we'll see a more detailed explanation of finding relative primes in the next section)

Euler's Totient Function

DEFINITION: Euler's totient function counts the number of relatively prime integers $n \ge 1$ and is expressed as $\phi(n)$

relatively prime: two integers which only share 1 as a common divisor

EX: let n = 6

first we must list all factors of 6 and preceding values,

factors of $6 = \{1, 2, 3, 6\}$

factors of $1 = \{1\}$ factors of $2 = \{1, 2\}$ factors of $3 = \{1, 3\}$ factors of $4 = \{1, 2, 4\}$ factors of $5 = \{1, 5\}$

next, we remove values who share a common factor other than 1 with n,

factors of $1 = \{1\}$
factors of $2 = \{1, 2\}$
factors of $3 = \{1, 3\}$
factors of $4 = \{1, 2, 4\}$
factors of $5 = \{1, 5\}$

we now have our set of relative primes for n = 6: {1,5} (recall multiplicative groups of integers!). since there are four relative primes, $\phi(6) = 2$

since primes p only have factors of $\{1, p\}$, every positive integer n < p is a relative prime for some given p, so we have that $\phi(p) = p - 1$

$\phi(6)$	$\phi(8)$ n	$\phi(13)$

Activity #1: Computing the Totient of n

we'll use the totient of n to make determining primitive roots significantly more efficient!

Primitive Roots

DEFINITION: an integer g is a primitive root modulo n if every integer a relatively prime to n is congruent to g to some power. We can express this as: $g^k \equiv a \pmod{n}$

note: not all positive integers have primitive roots!

EX: let n = 6

first, let's calculate $\phi(6)$ and find the residues modulo 6. These will help cut down our work in future steps. (methods in prior sections)

$$\phi(6) = 2$$
residues modulo 6 = {1,5}

now, let's check for primitive roots. The relative primes are the only values we need to check for g, and we only need to check positive powers $k \leq \phi(6)$

also, $1^k = 1$ for any k > 0, so 1 will never be a primitive root, and is a trivial check

thus, lets check the next and final relative prime, 5

$$5^1 \equiv 5^1 \pmod{6} = 5 \pmod{6} = 5$$

 $5^2 \equiv 5^2 \pmod{6} = 25 \pmod{6} = 1$

since we were able to find all relative primes of 6 congruent to some $5^k \pmod{6}$, we have that 5 is a primitive root modulo 6

n = 14	n = 8	n = 13

Activity #2: Finding Primitive Roots

Diffie-Hellman Key Exchange

cryptographic explanation

DEF: The Diffie-Hellman key exchange uses two secret numbers, and modifies them with public values including a prime integer p and primitive root modulo p, defined as g. This creates a shared private encryption key between two parties

EX: let public values p = 29, g = 2

Alice and Bob both define private values a and b for themselves respectively

a = 6b = 3

Alice then shares $2^6 \pmod{29}$ with Bob, and Bob shares $2^3 \pmod{29}$ with Alice. Lets call these values A and B respectively. These are also public

$$A = 2^{6} \pmod{29} = 64 \pmod{29} = 6$$
$$B = 2^{3} \pmod{29} = 8 \pmod{29} = 8$$

Then, Alice computes $B^a \pmod{29}$, and Bob computes $A^b \pmod{29}$

 $A^b \pmod{29} = 262144 \pmod{29} = 13$ $B^a \pmod{29} = 216 \pmod{29} = 13$

Alice and Bob now have a shared private value 13 for an encryption key

Activity #3: Create Your Own Encryption Key

choose any positive prime integer p and check whether it has a primitive root. If so, find a friend, choose your private numbers, and follow the protocol!

p = ..., q = ...,a or b = ...